The CORAL TPU can be used to speed up Tensorflow on the RPi to give a fairly reasonable rate for computer vision tasks such as object detection, pose estimation, speech recognition.
For examples see: https://coral.ai/models/object-detection/
Assuming Python3 is already installed.....
Install Tensorflow Lite
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.listcurl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
sudo apt-get update
sudo apt-get install python3-tflite-runtime
Source info: https://www.tensorflow.org/lite/guide/python
Install Python Coral
sudo apt-get install python3-pycoral
Clone the Coral Examples into a new folder
mkdir pycoral
cd pycoral
git clone https://github.com/google-coral/pycoral.git
source: https://github.com/google-coral/pycoral
Clone the test data:
git clone https://github.com/google-coral/test_data.git
Give it a go with an image:
pi@pi3:~/code/pycoral/pycoral $ python3 examples/detect_image.py --model test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite --labels test_data/coco_labels.txt --input ~/images/20211001/images/A21100100192512.jpg
----INFERENCE TIME----
Note: The first inference is slow because it includes loading the model into Edge TPU memory.
274.20 ms
81.01 ms
91.19 ms
72.09 ms
69.50 ms
-------RESULTS--------
car
id: 2
score: 0.671875
bbox: BBox(xmin=-6, ymin=138, xmax=697, ymax=560)
car
id: 2
score: 0.6171875
bbox: BBox(xmin=97, ymin=220, xmax=1165, ymax=975)