http://projecteuler.net/index.php?section=problems&id=21
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
___________________
static void Main(string[] args)
{
long sumofallpairs = 0;
for (int n = 1; n < 10000; n++)
{
if (isamicablepair(n))
{
sumofallpairs +=n;
}
}
Console.WriteLine(sumofallpairs);
Console.ReadLine();
}
static bool isamicablepair (int n)
{
int sum1 = 0;
int sum2 = 0;
foreach (int i in divisors(n))
{
sum1 += i;
}
foreach (int i in divisors(sum1))
{
sum2 += i;
}
if (n == sum2 && n != sum1)
{
return true;
}
else
{
return false;
}
}
static List<int> divisors(int n)
{
List<int> div = new List<int>();
for (int d = 1; d < n; d++)
{
if (n % d == 0) { div.Add(d); }
}
return div;
}
No comments:
Post a Comment